Desferrioxamine inhibits protein tyrosine nitration: mechanisms and implications.

نویسندگان

  • Margaret A Adgent
  • Giuseppe L Squadrito
  • Carol A Ballinger
  • David M Krzywanski
  • Jack R Lancaster
  • Edward M Postlethwait
چکیده

Tissues are exposed to exogenous and endogenous nitrogen dioxide ((·)NO(2)), which is the terminal agent in protein tyrosine nitration. Besides iron chelation, the hydroxamic acid (HA) desferrioxamine (DFO) shows multiple functionalities including nitration inhibition. To investigate mechanisms whereby DFO affects 3-nitrotyrosine (3-NT) formation, we utilized gas-phase (·)NO(2) exposures, to limit introduction of other reactive species, and a lung surface model wherein red cell membranes (RCM) were immobilized under a defined aqueous film. When RCM were exposed to ()NO(2) covered by +/- DFO: (i) DFO inhibited 3-NT formation more effectively than other HA and non-HA chelators; (ii) 3-NT inhibition occurred at very low[DFO] for prolonged times; and (iii) 3-NT formation was iron independent but inhibition required DFO present. DFO poorly reacted with (·)NO(2) compared to ascorbate, assessed via (·)NO(2) reactive absorption and aqueous-phase oxidation rates, yet limited 3-NT formation at far lower concentrations. DFO also inhibited nitration under aqueous bulk-phase conditions, and inhibited 3-NT generated by active myeloperoxidase "bound" to RCM. Per the above and kinetic analyses suggesting preferential DFO versus (·)NO(2) reaction within membranes, we conclude that DFO inhibits 3-NT formation predominantly by facile repair of the tyrosyl radical intermediate, which prevents (·)NO(2) addition, and thus nitration, and potentially influences biochemical functionalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin II Inhibits Insulin-Stimulated GLUT4 Translocation and Akt Activation through Tyrosine Nitration-Dependent Mechanisms

Angiotensin II (Ang II) plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO...

متن کامل

Inhibition of myeloperoxidase-mediated protein nitration by tempol: Kinetics, mechanism, and implications.

Despite the therapeutic potential of tempol (4-hydroxy-2,2,6,6-tetra-methyl-1-piperidinyloxy) and related nitroxides as antioxidants, their effects on peroxidase-mediated protein tyrosine nitration remain unexplored. This posttranslational protein modification is a biomarker of nitric oxide-derived oxidants, and, relevantly, it parallels tissue injury in animal models of inflammation and is att...

متن کامل

Peroxynitrite-dependent activation of protein phosphatase type 2A mediates microvascular endothelial barrier dysfunction

AIMS We investigated the mechanism by which proinflammatory stimulation induces microvascular endothelial barrier dysfunction. Since protein phosphatase type 2A (PP2A) can mediate paracellular leak and can be inactivated by tyrosine phosphorylation in its catalytic subunit (PP2Ac), we hypothesized that microvascular endothelial cells exposed to proinflammatory stimulation produce peroxynitrite ...

متن کامل

Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: Lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6-20)NH2 peptide.

To determine if nitration of tyrosine residues by peroxynitrite (PN), which can be generated endogenously, can disrupt the phosphorylation of tyrosine residues in proteins involved in cell signaling networks, we studied the effect of PN-promoted nitration of tyrosine residues in a pentadecameric peptide, cdc2(6-20)NH2, on the ability of the peptide to be phosphorylated. cdc2(6-20)NH2 correspond...

متن کامل

Protein nitration in cardiovascular diseases.

There is growing evidence that cardiovascular disease is associated with progressive changes in the production of free radicals and radical-derived reactive species. These intermediates react with all major cellular constituents and may serve several physiological and pathophysiological functions. The nitration of protein tyrosine residues has been used as a footprint for in vivo production of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 53 4  شماره 

صفحات  -

تاریخ انتشار 2012